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Fig. 1. Adaptive hierarchical cuboid abstractions predicted by our network for 3D shapes from airplane, table and animal categories. Our neural network
was learned from a class of 3D shapes in an unsupervised manner. From top to bottom: the input 3D shape, the predicted cuboids at the first, second and
third level of the adaptive cuboid abstraction tree, the adaptive cuboid abstraction of the 3D shape. The black lines reveal the hierarchical relationship of
cuboids between the adjacent levels which abstracts how the shape part decomposes. Cuboids are color-coded by their corresponding indices defined in the
network. From the coded-colors, we can find the consistent correspondence of cuboids between different shapes in a class. At the second and third levels of
the adaptive cuboid abstraction tree, we also render the cuboids from the higher level in wire-frame for better illustration.

Abstracting man-made 3D objects as assemblies of primitives, i.e. , shape
abstraction, is an important task in 3D shape understanding and analysis. In
this paper, we propose an unsupervised learning method for automatically
constructing compact and expressive shape abstractions of 3D objects in
a class. The key idea of our approach is an adaptive hierarchical cuboid
representation that abstracts a 3D shape with a set of parametric cuboids
adaptively selected from a hierarchical and multi-level cuboid represen-
tation shared by all objects in the class. The adaptive hierarchical cuboid
abstraction offers a compact representation for modeling the variant shape
structures and their coherence at different abstraction levels. Based on this
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representation, we design a convolutional neural network (CNN) for predict-
ing the parameters of each cuboid in the hierarchical cuboid representation
and the adaptive selection mask of cuboids for each input 3D shape. For
training the CNN from an unlabeled 3D shape collection, we propose a set of
novel loss functions to maximize the approximation quality and compactness
of the adaptive hierarchical cuboid abstraction and present a progressive
training scheme to refine the cuboid parameters and the cuboid selection
mask effectively.

We evaluate the effectiveness of our approach on various 3D shape col-
lections and demonstrate its advantages over the existing cuboid abstraction
approach. We also illustrate applications of the resulting adaptive cuboid
representations in various shape analysis and manipulation tasks.
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1 INTRODUCTION
Abstraction is real, probably more real than nature.

— Josef Albers, 1966

Real world objects, especially man-made objects, often exhibit
strong structures and are composed of parts with simple shapes.
This abstract shape and structure information can well characterize
a 3D object and plays an important role in many graphics and
vision applications [Fu et al. 2016; Hu et al. 2018; Mitra et al. 2014].
Shape abstraction represents the shape and structure of 3D objects
with assemblies and relations of simple primitive instances. An
ideal shape abstraction should be expressive and compact so that it
can represent various 3D shapes with as few as possible primitive
instances. Moreover, the layout of the primitive instances should be
consistent with the structure of the 3D object so that it can easily
reveal the common structure and sub-structure shared by different
objects. Although humans can easily recognize and create good
shape abstractions of 3D objects, developing an automatic 3D shape
abstraction algorithm is still a challenging task.

Shape approximation methods [Cohen-Steiner et al. 2004; Li et al.
2011; Lu et al. 2007; Yan et al. 2006; Zou et al. 2017] fit a 3D shape
with a set of 3D primitives via expensive non-linear optimization
or learned recurrent networks. Although these methods achieve
good expressiveness and compactness, they all ignore the structure
information of 3D shapes. Shape co-segmentation and structure co-
analysis methods [Mitra et al. 2014; Xu et al. 2015] assume a fine level
shape abstraction (i.e. , semantic parts of over-segmentation patches)
of each 3D shape is known and infer the common structure shared by
a family of 3D shapes via clustering or deep neural networks trained
from annotated 3D shapes. However, obtaining the semantic parts
of 3D shapes or their structure-aligned segmentation patches is not
easy. Recently, Tulsiani et al. [2017] present an unsupervised method
for constructing consistent cuboid abstractions for a family of 3D
shapes. However, their method tends to generate oversimplified
abstractions and cannot handle large structure variations well due
to the single level of abstraction representation.

In this paper, we propose an unsupervised method for abstracting
a class of unlabeled 3D shapes with various structures. Our method
is based on two key observations. First, although 3D objects in a
class have various structures, they still share a common structure in
a higher abstraction level. Second, the different parts of a 3D shape
may exhibit different levels of structure details. Based on these two
observations, we propose an adaptive hierarchical cuboid represen-
tation for shape abstraction. We model the common structures of 3D
shapes in multiple abstraction levels with a hierarchical relationship
and abstract each shape by selecting leaf cuboids adaptively from
the cuboid hierarchy. The hierarchy of cuboids represents the inclu-
sion relationship between the cuboids at adjacent hierarchical levels.
Each level of the cuboid hierarchy models the 3D shapes with a
specific number of parametric cuboids, where the layout of cuboids
at each level and the layout of adaptive cuboids are consistent for
shapes sharing similar structures. The size, position, and orientation
of the cuboids are optimized to fit each 3D shape.

The adaptive hierarchical cuboid representation provides a com-
pact and expressive abstraction for 3D shapes with various struc-
tures. The cuboid hierarchy well models the coherence of the shape
structure in different abstraction levels, while the adaptive cuboid
abstraction provides a compact representation for 3D shapes with
various geometry and structure. However, generating this abstrac-
tion from unlabeled 3D shape collections is non-trivial because both
the parameters of cuboids and their adaptive hierarchy are unknown.
To overcome this challenge, we start from an initial candidate cuboid
hierarchy with a fixed yet redundant number of cuboids in each
level and design a convolutional neural network (CNN) that encodes
input shapes and decodes the parameters of cuboids in the cuboid hi-
erarchy and the cuboid selection mask for constructing the adaptive
cuboid abstraction. A set of loss functions is designed to improve
the geometric similarity between the resulting cuboids to the input
3D shape, as well as the hierarchical inclusion relationship of the
cuboids, and the compactness and completeness of the selection
mask. A novel progressive training scheme is proposed to predict
the cuboid hierarchy and the selection mask gradually and results in
an adaptive cuboid abstraction with a non-fixed number of cuboids.

With the help of the adaptive hierarchical cuboid representation,
our method successfully trains the network by exploiting the in-
trinsic structural coherence of 3D shapes at different abstraction
levels. Also, the hierarchy constraint at different levels also makes
our training more robust to shape and structure variations. The
resulting network not only predicts a compact abstraction of each
3D shape but also infers the hierarchical structures shared by the
whole shape collection.

We evaluate the performance of our method on four man-made
shape collections (airplane, chair, desk, four-legged animal) and
demonstrate its advantage over other state-of-the-art shape ab-
straction approaches in terms of abstraction expressiveness and
compactness, and illustrate the abstraction consistency found by
our method. We also demonstrate the application of the learned
adaptive hierarchical cuboid representation on a set of shape under-
standing and manipulation tasks, including structure classification,
abstraction-aware shape deformation, interpolation, and retrieval.
As an obvious limitation, our method cannot offer non-geometry
semantics to the abstraction because our method considers the geo-
metric approximation quality of the cuboid abstraction only.

2 RELATED WORK
Our work is related to shape approximation methods that are based
on surface or volumetric primitives. It is also related to shape co-
segmentation and shape structure analysis if we regard the seg-
mented surface patches or semantic parts of 3D shapes as primitives.
In this section, we first review the literature related to our work
and then briefly discuss the shape abstraction works based on other
representations.

Shape abstraction by geometric optimization. Variational shape ap-
proximation techniques [Cohen-Steiner et al. 2004; Yan et al. 2006]
fit the 3D shape with simple surface patches, where the surface
patches are progressively updated and inserted to minimize the
approximation error. Bradshaw et al. [2004] construct a hierarchical
sphere tree by refining a medial axis approximation to a sphere tree
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progressively. Zou et al. [2017] train a recurrent network with 3D
shapes and their cuboid representations computed by geometric op-
timization for inferring cuboids representation from depth images.
Wu et al. [2018] and Du et al. [2018] develop two different strategies
for deriving the CSG tree of a 3D shape. All these methods achieve
relatively good expressiveness and compactness by optimizing both
the number of primitive instances and their parameters. However,
they all ignore the structure information of the 3D shapes. Yumer et
al. [2012] present a spectrum extraction method for generating con-
sistent abstraction of a 3D shape collection. However, their results
do not explicitly encode the structure information of 3D shapes.
Different from these methods, our method learns an adaptive shape
abstraction from a family of 3D shapes. Our shape abstraction results
not only deliver a compact approximation for each 3D shape but also
characterize the hierarchical structure of the whole shape family.

Shape co-segmentation. A set of methods have been developed for
generating consistent segmentation of 3D shape collections. Unsu-
pervised co-segmentation methods start from an over-segmentation
of 3D shapes and cluster the segmented patches based on either the
features of the segmented patches [Golovinskiy and Funkhouser
2009; Hu et al. 2012; Sidi et al. 2011] or high-level features learned
from patch features [Shu et al. 2016]. Huang et al. [2011] formulate
joint segmentation as an integer quadratic programming problem
and segment 3D shapes in a heterogeneous shape database. From a
shape abstraction perspective, all these methods assume that a fine-
level abstraction of each shape (i.e. , over-segmentation) is known
and derive a consistent layout of primitive groups for all 3D shapes.
Instead, our method infers the abstraction of each shape (parameters
of the cuboids) and a consistent layout of cuboids for all 3D shapes
simultaneously. Supervised co-segmentation methods [Kalogerakis
et al. 2017, 2010; Mo et al. 2019; Yu et al. 2019] train deep neural
networks from annotated 3D shape collections for generating con-
sistent segmentation of 3D shapes. Different from these supervised
methods that require annotated data for training, our method learns
shape abstraction from unlabeled 3D shapes.

Shape structure co-analysis. Several methods assume that the se-
mantic parts of each 3D shape are known and analyze the consistent
hierarchical structure of these parts shared by all 3D shapes. Kaick
et al. [2013] present a method for selecting a representative hier-
archical structure of parts for a 3D shape collection from the part
hierarchy of each 3D shape. Fish et al. [2014] analyze the geometric
configurations of a family of co-segmented 3D shapes and repre-
sent their structure with geometric distributions. Recently, Yi et
al. [2017] learn hierarchical shape segmentation and labeling from
online repositories, in which the part information and scene graphs
are provided. Li et al. [2017] also represent the 3D shape with a
hierarchical oriented bounding boxes (OBB) tree. They train a su-
pervised recursive neural network to predict the hierarchical tree
structure. Their recursive neural network is later used by Niu et
al. [2018] for predicting structure from image input directly.

Different from these methods that assume that the shape abstrac-
tion (i.e. , parts) of each object is known, our method derives the
primitives for each shape and their abstraction structure from an
unlabeled shape collection.

Unsupervised 3D shape abstraction. Tulsiani et al. [2017] propose
a convolutional neural network for predicting a consistent cuboid
representation for a 3D shape collection. The network is trained
with unlabeled 3D shapes by measuring the distance between the
cuboids and the corresponding 3D shapes. After that, a reinforce-
ment learning model is learned and applied to remove unnecessary
cuboids. Because the shape is abstracted by a set of cuboids in a
same level, without any hierarchy, their method cannot well address
structure variations, often results in over-simplified abstractions as
shown in Figure 11(c). In contrast, our adaptive hierarchical cuboid
representation can better handle shapes with various structures.

Representations for shape abstraction. Besides the volumetric and
surface-based primitives described above, a set of curve based rep-
resentations, such as curve skeletons [Cornea et al. 2007; Hassouna
and Farag 2009], curve networks [De Goes et al. 2011; Gori et al.
2017; Mehra et al. 2009], Eulerian wires [Lira et al. 2018], have also
been used for approximating 3D shapes. For man-made objects,
planar patches and quadric patches [Cohen-Steiner et al. 2004; Li
et al. 2011; Wu and Kobbelt 2005; Yan et al. 2006] are also used for
abstracting 3D shapes. We take parametric cuboids as the output of
the shape abstraction network because it provides a compact yet
expressive representation for our learning task.

3 ADAPTIVE HIERARCHICAL CUBOID
REPRESENTATION

In this section, we present our adaptive hierarchical cuboid repre-
sentations for shape abstraction. We first define cuboid abstraction
(Section 3.1) and bring the hierarchy into multi-level cuboid abstrac-
tion (Section 3.2), then we introduce adaptive cuboid abstraction built
upon the hierarchical cuboid abstraction as the optimal abstraction
for the input shape (Section 3.3).

3.1 Cuboid abstraction
Similar to the work of [Tulsiani et al. 2017; Zou et al. 2017], we
use a set of cuboids as an abstraction form of 3D shapes. A cuboid
𝑐𝑖 is parameterized as a scaled unit cube centered at the original
point under a rigid transformation: ℎ𝑖 = (s𝑖 , r𝑖 , t𝑖 ). s𝑖 ∈ R3 is the
scaling factors along the three coordinate axes, r𝑖 ∈ R4 is the unit
quaternion representing the rotation, and t𝑖 ∈ R3 is the translation
vector. We say a set of cuboids {𝑐1, · · · , 𝑐𝑛} := C is an abstraction of
a 3D shape 𝑆 if the union of these cuboids is a good approximation to
𝑆 . Here a good approximation is measured in the following aspects:

– Volume coverage: the volume difference between the shape
volume and the union of all the cuboids should be small;

– Surface coverage: the surface area difference between 𝑆 and the
surface regions of all the cuboids should be small;

– Mutual exclusion: any two of cuboids has the least overlap so
that each of them can represent different parts of 𝑆 .

Besides the above criterions, the abstraction should also present the
symmetric relationship between some cuboids if the shape structure
possesses some types of symmetry at the part level.
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shape C1 C2 Cadapt
Fig. 2. Illustration of adaptive hierarchical cuboid representation (2-level).

3.2 Hierarchical cuboid abstraction
For a good 3D abstraction, the number of cuboids should vary ac-
cording to the complexity of the input shape. However, too few
cuboids cannot capture small shape details and too many cuboids
might yield an over-decomposition. Inspired by the fact that many
shapes can be decomposed intomeaningful parts in amulti-level and
hierarchical way, we introduce hierarchy to the cuboid abstraction.
For a 3D shape 𝑆 , a collection of cuboid abstractions: C1 (𝑆) =

{𝑐 (1)1 , · · · , 𝑐 (1)𝑛1 },C2 (𝑆) = {𝑐 (2)1 , · · · , 𝑐 (2)𝑛2 }, · · · ,C𝐾 (𝑆) = {𝑐 (𝐾)1 , · · · , 𝑐 (𝐾)𝑛𝐾 },
0 < 𝑛1 < 𝑛2 < · · · < 𝑛𝐾 , is called a hierarchical cuboid abstraction
of 𝑆 if the following hierarchical relationship exists: for any cuboid
𝑐
(𝑘)
𝑙

∈ C𝑘 , there exists a unique 𝑐
(𝑘−1)
𝑜 ∈ C𝑘−1 as its parent and 𝑐

(𝑘)
𝑙

can be contained by 𝑐 (𝑘−1)𝑜 approximately. This relationship is de-
noted by 𝑐 (𝑘)

𝑙
⊆ 𝑐 (𝑘−1)𝑜 . A set of evaluation criterions of hierarchical

cuboid representation is as follows:
– Abstraction quality: each cuboid abstraction C𝑘 is a good ap-
proximation to S;

– Hierarchical coverage: the part of S approximated by the chil-
dren cuboids can be also approximated by their parent cuboid.
With the inclusion relationship between cuboids, the hierarchical

cuboid representation induces a tree structure whose root is a virtual
node connecting to every cuboid of C1. C𝑘 is called the 𝑘-th level
abstraction of 𝑆 .
For two 3D shapes A and B, if the tree structures of their hierar-

chical cuboid representations are the same, we say their hierarchical
cuboid abstractions consistent; if A has a subtree structure that is
same to a subtree of B, we say their hierarchical abstractions are
consistent in a sub-level. A good hierarchical cuboid representa-
tion should offer consistent tree structures to the shapes whose
geometric structures are similar.

3.3 Adaptive cuboid abstraction
The cuboids at higher hierarchical levels provide a coarse 3D ab-
straction and can well capture big parts of the shape while the
cuboids at lower levels can better represent small shape parts, but
may over-decompose the target shape. A good selection of cuboids
from different levels can well approximate the shape while keep-
ing the number of cuboids small. A constructive way to get such
a selection is to visit the abstraction tree from top to bottom and
prune the subtree if the root cuboid of the subtree can approximate
well the part of the shape that its children cuboids approximate. The
leaf cuboids on the pruned tree form an adaptive abstraction of the
input shape, denoted by 𝐶adapt (𝑆) = {𝑐★1 , . . . , 𝑐

★
𝑚}. Here 𝑚 is the

number of picked cuboids and it characterizes the compactness of
an adaptive abstraction.

In Figure 2 we illustrate the concept of adaptive cuboid representa-
tion in 2D. C1 and C2 are two-level hierarchical cuboid abstractions

C3

C2

C1C1
adapt

C2
adapt

Cadapt

virtual root

Fig. 3. Illustration of the tree structure of a 3-layer hierarchical cuboid
abstraction. For this particular example, C1

adapt is coincident with C1.

of the input shape. Cuboids in C2 are colored using the color of their
parent cuboids in C1. 𝐶adapt is the adaptive cuboid abstraction and
we distinguish the level of cuboids with different colors (cuboids
from C2 are darker). More real examples of 3D abstractions can be
found in Figure 1 and Section 5.

The cuboids in𝐶adapt (𝑆) and their ancestor nodes form a subtree
of the hierarchical cuboid abstraction tree, denoted by Tree(Cadapt).
The consistency defined in Section 3.2 also stands for Tree(Cadapt).
On Tree(Cadapt), we can also build a series of adaptive cuboid ab-
stractions by restricting the depth level of cuboids at a certain level
𝑘 : C𝑘adapt, 𝑘 = 1, . . . , 𝐾 , called 𝑘-level adaptive cuboid abstraction.
The construction C𝑘adapt is simple. By removing all sub-trees whose
level is below 𝑘 from Tree(Cadapt), the leaf nodes at this pruned
tree form C𝑘adapt. By construction, we have C𝐾adapt = Cadapt, and
the union of C𝑘adapts is Tree(Cadapt). In Figure 3, we illustrate the
construction of 𝑘-level adaptive cuboid abstraction on a three-layer
hierarchical abstraction. The yellow nodes represent the cuboids of
Cadapt, the nodes inside the cyan region form C2

adapt and the node
inside the pink region form C1

adapt.
The quality of cuboid abstractions is evaluated under the follow-

ing conceptual criteria (their realizations are provided as the loss
functions in Section 4 for network training).
– Abstraction quality: Cadapt is a good approximation to S.
– Hierarchical consistency: C𝑘adapt, 𝑘 = 1, . . . , 𝐾 − 1 are all good
approximations to S so that Tree(Cadapt) can provide a hierar-
chical cuboid decomposition to S.

– Abstraction compactness:𝑚 is as small as possible.

4 ALGORITHM

4.1 Overview
We design a convolutional neural network to learn the adaptive
hierarchical cuboid abstractions from a category-specified shape
collection without supervision. The network structure (Section 4.2)
encodes an input 3D shape and outputs a hierarchical cuboid ab-
straction and a cuboid selection mask with which a set of cuboids
are picked from the hierarchical cuboid abstraction to form the adap-
tive cuboid abstraction. Two decoder branches — cuboid prediction
module and cuboid selection module, are designed to generate the
above outputs. To overcome the difficulty of no supervision on the
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cuboid prediction module

FC(128) FC(128)

cuboid selection module

FC(128) FC(128)

x

+x

x

cuboid abstraction encoder

FC(128)

O-CNN(5)

C3

C2

C1

M3

M2

M1 Cadapt

Fig. 4. The three-level cuboid abstraction network structure. Left: the 3D
encoder. Upper-right: the cuboid prediction module that infers the parame-
ters for all the cuboids. Lower-right: the selection prediction module that
picks the cuboids from each level to form the optimal cuboid abstraction.

cuboid parameters and the selection of cuboids, we design a set of
novel loss functions that realize the evaluation criteria of adaptive
hierarchical cuboid abstractions (Section 4.3), and we also propose
a progressive training scheme to train the network robustly and
effectively as follows.

– Initial training. We train the encoder and the cuboid prediction
module from scratch to generate a multi-level cuboid abstraction
with hierarchy.

– Cuboid selection training. We fix the encoder and the cuboid
prediction module and use the current hierarchical abstraction
output to train the cuboid selection module to obtain adaptive
cuboid abstractions.

– Cuboid prediction training. With the fixed encoder and the
selected cuboids, we update the cuboid prediction module to
improve the cuboid parameters. A set of loss functions defined
on the adaptive abstraction are added to encourage the selected
cuboids to be a good approximation to the input shape.

– Alternative training. We update the cuboid selection module
and the cuboid prediction module alteratively. The alternative
training progressively refines the selection mask and the param-
eters of the selected cuboids. Finally, we fine-tune the whole
network with a small learning rate.

4.2 Network structure
Our network has a simple encoder-decoder structure as shown in
Figure 4. It includes a 3D encoder and two decoder branches: the
cuboid prediction module and the cuboid selection module.

3D encoder. The 3D encoder takes a 3D shape as input and outputs
a 128-dimensional vector as the latent code. We employ the octree-
based convolution neural network (O-CNN) [Wang et al. 2017]
to construct this 3D encoder. O-CNN is a 3D convolution neural
network that utilizes the sparsity of 3D surfaces in the volumetric
space to achieve high efficiency both on memory consumption and
computational cost. The encoder structure of O-CNN(d) is as follows:

d-depth octree → U𝑑 → U𝑑−1 → · · · → U2 .

U𝑙 is the basic unit “convolution + BN + ReLU + pooling” at the
𝑙-th depth octants. The channel number of the feature map for U𝑙
is 2max(1,9−𝑙) and the convolution kernel size is 3. The convolution
and pooling operations are designed for the octree structure. In our
implementation, we use O-CNN(5). A fully-connected layer with a
tanh activation is added after O-CNN(5). Experimentally we found
that removing the BN layer helps predicate the cuboid abstraction
with a smaller approximation error and more diverse structures,
thus we do not use the BN layer in our implementation.
The input surface 𝑆 is discretized as a set of points with normal

information, denoted by P(𝑆). In our implementation, we sample
5000 points uniformly from the input surface.

Cuboid prediction module. This module decodes the latent code
as the cuboid parameters of all the cuboids by two fully-connected
layers. The dimension of the output vector is

∑𝐾
𝑘=1 10𝑛𝑘 and each

10-dimensional subvector corresponds to the parameters of a cuboid.
Here 𝑛𝑘 , the number of cuboids at each level, is predefined by the
user. In our implementation, we set 𝐾 = 3.

Cuboid selection module. This module decodes the latent code as
a
∑𝐾
𝑘=1 𝑛𝑘 -dimensional vector in which each entry is the probability

value for the corresponding cuboid being selected for the adaptive
abstraction, where 1 indicates that a cuboid is selected. This decoder
is also constructed by two fully-connected layers. By rounding all
the entries of this vector, we obtain a cuboid selection mask. With
this mask, an adaptive cuboid abstraction can be extracted from the
predicted hierarchical cuboid abstraction.

4.3 Loss functions
From the network output, we can construct a series of abstractions:
– Cuboid abstractions at each hierarchical level: C𝑘 , 𝑘 = 1, . . . , 𝐾 ;
– Adaptive cuboid abstraction and its 𝑘-level adaptive cuboid ab-
stractions: Cadapt and C𝑘adapt, 𝑘 = 1, . . . , 𝐾 − 1.

We design a set of loss functions to evaluate their quality according
the evaluation criteria introduced in Section 3. We categorize the
loss functions into four types: (1) the approximation losses that
encourage the cuboid abstraction to be a good approximation to the
input shape; (2) the hierarchical loss that helps build the hierarchical
relationship between adjacent abstraction levels; (3) regularization
losses for improving the aesthetics of the abstraction and avoiding
some degeneracy; (4) losses for the validity and sparsity of the
selection mask.

4.3.1 Geometry approximation losses.

Volume coverage loss. To faithfully approximate the input shape,
the union of cuboids of an abstraction C should contain the input
shape 𝑆 . To be specific, each point of P(𝑆) is expected to be in-
side one of the cuboids. We define a distance function disin (x, 𝑐) to
measure the coverage of a point x ∈ R3 by a cuboid 𝑐:

disin (x, 𝑐) =
{
0, if x ∈ Ωvol (𝑐);
minq∈Ωsurf (𝑐) ∥x − q∥, otherwise,

where Ωvol (𝑐) and Ωsurf (𝑐) denote the interior region of 𝑐 and the
boundary surface of 𝑐 , respectively.
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By summing all the point coverage values, a volume coverage
loss for C is defined as follows:

𝐿vol (C) :=
∑
p∈P(𝑆) min𝑐∈C disin (p, 𝑐)2∑

p∈P(𝑆) 1
.

Surface coverage loss. We define a loss function to penalize the
surface shape difference between 𝑆 and the cuboid surface. On the
boundary of each cuboid, we uniformly sample 𝑛𝑠 points, and define
the surface coverage loss as the summation of the squared shortest
distances from these samples to 𝑆 :

𝐿surf (C) :=
∑
𝑐∈C

∑
p∈Ωsurf (𝑐) dis(p, 𝑆)

2∑
𝑐∈C

∑
p∈Ωsurf (𝑐) 1

,

where dis(p, 𝑆) is the shortest Euclidean distance from p to 𝑆 . In our
implementation, 𝑛𝑠 is set to 96 for cuboids at the coarsest level and
26 for others.

Mutex loss. The overlap region between cuboids should be as
small as possible so that the abstraction is compact and each cuboid
represents a unique part of the shape. Because the intersected vol-
ume of two cuboids is not differentiable, we use an alternative way
to penalize cuboid intersection.
A distance function disout (x, 𝑐) is defined to measure how far a

point is away from a cuboid 𝑐:

disout (x, 𝑐) =
{
0, if x ∉ Ωvol (𝑐);
minq∈Ωsurf (𝑐) ∥x − q∥, otherwise.

For any two cuboids 𝑐𝑖 and 𝑐 𝑗 , if they have no overlap, we have
disout (p, 𝑐𝑖 ) = 0,∀p ∈ Ωvol (𝑐 𝑗 ) and disout (q, 𝑐 𝑗 ) = 0,∀q ∈ Ωvol (𝑐𝑖 ).
Based on this fact, we sample 𝑛𝑚 points uniformly from the interior
and boundary region of each cuboid, and penalize the distance from
these points to other cuboids by the following mutex loss function:

𝐿mutex (C) :=
∑
𝑐𝑖 ∈C

∑
p∈𝑐𝑖

∑
𝑗≠𝑖 disout (p, 𝑐 𝑗 )2∑

𝑐𝑖 ∈C
∑
p∈𝑐𝑖

∑
𝑗≠𝑖 1

,

where q ∈ 𝑐𝑖 is a sample point. 𝑛𝑚 is set to 27 in our implementation.

Remark. The sample points from the interior and boundary of
cuboids used in the loss functions are parameterized by the linear
combinations of corner points of the cuboid, thus these losses are
differentiable and friendly to network training.

4.3.2 Hierarchy loss.

Hierarchical coverage loss. For any abstraction C𝑘 , 𝑘 < 𝐾 , we
utilize its cuboid inclusion relationship between C𝑘 and C𝑘+1 to
design its hierarchical volume coverage loss. We divide the points
of P(𝑆) into 𝑛𝑘+1 groups, P1 (𝑆), . . . ,P𝑛𝑘+1 (𝑆), by assigning each
point to its closest cuboid in C𝑘+1, where the closeness is defined
by disin. Here for simplicity, we assume that P𝑙 (𝑆) is associated
with 𝑐 (𝑘+1)

𝑙
, ∀𝑙 . Intuitively, each point group should be contained

by a cuboid of C𝑘 if 𝑐 (𝑘+1)
𝑙

is contained by this cuboid. We utilize
this inherent hierarchy to define the hierarchical coverage loss for
C𝑘 , 𝑘 < 𝐾 :

𝐿H (C𝑘 ) :=
∑𝑛𝑘+1
𝑗=1

∑
p∈P𝑗 (𝑆) disin (p, 𝑐

★
𝑗
)2∑𝑛𝑘+1

𝑗=1
∑
p∈P𝑗 (𝑆) 1

,

where 𝑐★
𝑗
= argmin𝑐∈C𝑘

∑
p∈P𝑗 (𝑆) disin (p, 𝑐)

2.

Hierarchical relationship. Since 𝑐★
𝑗
contains the shape region asso-

ciated with 𝑐 (𝑘+1)
𝑗

, we set 𝑐★
𝑗
as the parent cuboid of 𝑐 (𝑘+1)

𝑗
. In this

way, the hierarchical relationship of C1, . . . , C𝐾 can be built.

4.3.3 Regularization losses.

Average area loss. To avoid degenerate cuboids predicted by the
network, we penalize the difference between the area of each cuboid
from the average area of cuboids. The average loss functions are
defined as

𝐿avearea (C) :=

∑
𝑐∈C

(
|Ωsurf (𝑐) | −

∑
𝑐∈C |Ωsurf (𝑐) |∑

𝑐∈C 1

)2
∑
𝑐∈C 1

,

where |Ωsurf (𝑐) | is the surface area of the cuboid 𝑐 .

Bilateral symmetry loss. Notice that many man-made shapes pos-
sess symmetry structures, we design a symmetry loss to encourage
the cuboid abstraction to have this property. Currently, we consider
bilateral symmetry only and assume that the shapes in the dataset
are pre-aligned so that the bilateral symmetry plane is the XY-plane.
For a cuboid 𝑐 , we sample 𝑛𝑏 points from its interior and boundary
and denote the set of the bilateral symmetry copies of these points
by 𝑄 (𝑐). If there exists a cuboid 𝑐𝑏 (𝑐𝑏 can be 𝑐 itself) that is the
bilateral symmetry copy of 𝑐 , we have disin (q, 𝑐𝑏 ) = 0,∀q ∈ 𝑄 (𝑐).
Based on this observation, the bilateral symmetry loss is defined as:

𝐿sym (C) =
∑
𝑐∈C

∑
p∈𝑄 (𝑐) disin (p, 𝑐★)2∑
𝑐∈C

∑
p∈𝑄 (𝑐) 1

,

where 𝑐★ = argmin𝑐 𝑗 ∈C
∑
p∈𝑄 (𝑐) disin (p, 𝑐 𝑗 )2, and 𝑛𝑏 is set to 27.

Cuboid alignment loss. We find that many parts of man-made
shapes are nearly axis-aligned like of the armrest of a chair and the
wings of an airplane. We add an axis-aligned alignment loss to let
the cuboid align with the coordinate axes to improve the aesthetics
of the cuboid abstraction.

𝐿align (C) :=
∑
𝑐∈C ∥r(𝑐) − r𝐼 ∥2∑

𝑐∈C 1
,

where r(𝑐) is the quaternion parameter of 𝑐 and r𝐼 = (1, 0, 0, 0)𝑇
corresponds to the identity transformation.

4.3.4 Losses for cuboid selection.

Tree completion loss. The cuboid selection module outputs a set
of selection probability values for all the cuboids in the hierarchical
cuboid abstraction. We denote Prob(𝑐) as the selection probability
for cuboid 𝑐 . A simple rounding of all the Prob(𝑐)s yield a set of
selected cuboids, however, this selection may violate the tree struc-
ture of adaptive cuboid abstraction. We design a tree completion
loss to penalize the invalid selection.

𝐿complete :=
∑
𝑐∈C𝐾 |𝑝ℎ (𝑐) − 1|2∑

𝑐∈C𝐾 1
,

where 𝑝ℎ (𝑐) is the summation of the selection probability values of
𝑐 and all its ancestor cuboids (except the virtual root). For a valid
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adaptive abstraction, 𝑝ℎ (𝑐), 𝑐 ∈ C𝑘 should be 1 because there is only
one selected cuboid on the path from 𝑐 to its ancestor at C1.

Mask sparsity loss. A smaller number of the selected cuboids
make the adaptive cuboid abstraction more compact. We define the
sparseness loss as

𝐿sparse :=
∑𝐾
𝑘=1

∑
𝑐∈C𝑘 Prob(𝑐)∑𝐾

𝑘=1
∑
𝑐∈C𝑘 1

.

Approximation Loss. The selected cuboids should be also a good
cuboid abstraction to the input surface. We modify the volume and
surface coverage losses to estimate the approximation quality of all
the cuboids with the consideration of the probability of each cuboid
appearing in the adaptive abstraction:

𝐿★vol :=
∑𝐾
𝑘=1

∑
p∈P(𝑆) Prob(𝑐 (𝑘) (p)) ·min𝑐∈C𝑘 disin (p, 𝑐)2∑𝐾

𝑘=1
∑
p∈P(𝑆) Prob(𝑐 (𝑘) (p))

;

𝐿★surf :=
∑𝐾
𝑘=1

∑
𝑐∈C𝑘

∑
p∈Ωsurf (𝑐) Prob(𝑐) · dis(p, 𝑆)

2∑𝐾
𝑘=1

∑
𝑐∈C𝑘

∑
p∈Ωsurf (𝑐) Prob(𝑐)

,

where 𝑐 (𝑘) (p) = argmin𝑐∈C𝑘 disin (p, 𝑐)
2.

We define the approximation loss by simply summing the above
two terms and normalizing the sum by the average coverage losses
on the coarsest and finest level, per shape:

𝐿approx :=
𝐿★vol + 𝐿

★
surf

(𝐿vol (C1) + 𝐿surf (C1) + 𝐿vol (C𝐾 ) + 𝐿surf (C𝐾 ))/2
.

This loss measures the approximation quality of the adaptive
cuboid abstraction. It is designed with the consideration of the
probability of each cuboid appearing in the adaptive abstraction.

4.4 Network training
We train our network using a progressive training scheme as intro-
duced in Section 4.1.
– Initial training. We first train the network to generate the hi-
erarchical cuboid abstraction. The loss function 𝐿pred of each
training shape is a combination of the geometry approximation
losses, hierarchical loss and regularization losses:

𝐿pred :=
𝐾∑︁
𝑘=1

(𝐿vol (C𝑘 ) + 𝐿surf (C𝑘 ) + 𝐿mutex (C𝑘 )) +
𝐾−1∑︁
𝑘=1

𝐿H (C𝑘 )+

𝐾∑︁
𝑘=1

(
𝛼sy𝐿sym (C𝑘 ) + 𝛼aa𝐿avearea (C𝑘 ) + 𝛼al𝐿align (C𝑘 )

)
.

We set 𝛼sym = 0.1, 𝛼avearea = 5, 𝛼align = 0.001 at the beginning
of the training. The regularization is useful at the first few epochs
to reach a reasonable good cuboid layout. After 500 epochs, 𝛼sym
and 𝛼align reduces by half every 100 epochs.

– Cuboid selection training. By fixing the encoder and the cuboid
prediction decoder, the hierarchical abstractions of the training
dataset are also known. We use these hierarchical abstractions
to train the cuboid selection module. The loss function of each
training shape is formulated as:

𝐿mask := 𝐿complete + 𝜆approx𝐿approx + 𝜆sparse 𝐿sparse,

(a) (b) (c) (a) (b) (c)
Fig. 5. Adaptive abstraction correction. (a) the input shape; (b) an invalid
adaptive abstraction chosen from the worst cases of our test data; (c) the
valid adaptive abstraction after correction.

where 𝜆approx and 𝜆sparse balance the approximation error and
the sparsity of the selection mask. We set 𝜆approx = 0.1 and
𝜆sparse = 0.4 in our implementation. After the training, the
cuboid selection module can predict the selection mask. However,
the network cannot guarantee that 𝐿complete vanishes always, so
the resulting adaptive abstraction can be invalid. We propose a
simple way to fix the issue: (1) we first round the probability val-
ues to 0 or 1, and obtain a set of selected cuboids; (2) we examine
the cuboids of the hierarchical abstraction from level 1 to 𝐾 − 1; if
the selection probability of a cuboid is 1, we set the probability of
all its descendant cuboids to 0; (2) if for a cuboid 𝑐 ∈ C𝑘 , 𝑝ℎ (𝑐 (𝐾) )
vanishes, we pick the nearest ancestor cuboid of 𝑐 (𝐾) which has
no descendant cuboid with the selected label, and label it selected.
This strategy guarantees that the resulting adaptive abstraction
is valid. Figure 5 shows some correction results.

– Cuboid prediction training With the trained cuboid selection
module and the correction operation, the adaptive cuboid abstrac-
tions of the training dataset can be computed. We fix the encoder
and the cuboid selection decoder and train the cuboid prediction
module. Since the adaptive cuboid abstraction is available at the
current stage, we add the approximation losses of it and its k-level
adaptive cuboid abstractions into the loss function 𝐿pred to refine
the cuboid parameters, especially for the cuboids on the subtree
of Cadapt.

𝐿★pred :=𝛽
𝐾∑︁
𝑘=1

(
𝐿vol (C𝑘adapt) + 𝐿surf (C

𝑘
adapt) + 𝐿mutex (C

𝑘
adapt)

)
+

𝐿pred .

𝛽 is initialized as 1.
– Alternative training. We iterate the cuboid selection training
and the cuboid prediction training. 𝛽 gets doubled after each
round of alternative training. we execute a few rounds of alterna-
tive training, and fine-tune the whole network. The loss used in
the fine-tuning is: 𝐿★pred + 0.02𝐿mask.

5 EXPERIMENTS AND APPLICATIONS

5.1 Experiment setup and evaluation metrics
We conduct a series of experiments to evaluate our method. The
network is implemented in the TensorFlow framework [Abadi et al.
2015] and the experiments were run on a desktop computer with
an Intel Core I7-6850K CPU (3.6GHz) and a GeForce GTX 1080 Ti
GPU (11GB memory). Our implementation is available at https:
//isunchy.github.io/projects/cuboid_abstraction.html.
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Dataset. The network is trained separately on four man-made
shape categories: airplane (3640 shapes), chair (5929 shapes), table
(7555 shapes) and four-legged animal (122 shapes). These datasets
are obtained from ShapeNet [Chang et al. 2015] and [Tulsiani et al.
2017]. We partition the data set into the ratio of 4:1 for training and
test. All the shapes are prealigned and scaled within a unit box.

Abstraction and network parameters. We specify the number of
cuboids at each level (#C1, #C2, #C3) with respect to the shape com-
plexity: (4, 8, 16) for airplane, (8, 16, 32) for chair, (3, 6, 12) for table
and (5, 10, 20) for animal. These ad-hoc cuboid numbers for each
category is set experimentally to obtain better visual pleasing and
more semantically consistent results. The weights of loss function
uses the default values as stated in Section 4.

Network training. The cuboid prediction network at the first stage
was trained with the Adam optimizer (lr=0.001) and converged after
1000 epochs. The mask selection network (200 epochs) and the hier-
archical cuboid prediction network (200 epochs) were alternatively
trained, and they converged after 5 rounds. In the final fine-tuning
stage, the learning rate of parameters in the encoder is set to 10−5
and the network converged after 200 epochs. The mini-batch size
is 32 and the training time for the four categories is 16, 24, 14, 20
hours, respectively.

Evaluationmetric. We compute the Chamfer distance between the
input shape surface and the boundary surface of the set of cuboids
to evaluate the fitting quality of the network output. The metric is
denoted by 𝐷cd and scaled by 1000 for better viewing.

Visualization of abstraction consistency and hierarchy. The learned
cuboid abstraction exhibits a consistent correspondence. The cuboids
of different shapes with the same index usually correspond to a sim-
ilar part of the target shape. For instance, in our learned results for
the airplane category, the cuboid with index 2 in C1 corresponds
to the left wing, and the cuboid with index 6 in C3 represents the
right tail wing. This index-dependent consistency is also observed
in other learning works [Liu et al. 2018; Tulsiani et al. 2017]. To
illustrate this consistency, we specify a unique color to the index
of cuboids in each level abstraction. In total, there are

∑𝐾
𝑖 𝑛𝑖 colors.

This color coding helps us find consistent correspondence across
different shapes in the same category.

5.2 Network evaluation and ablation study
We conducted a set of experiments to validate the efficacy of our
training scheme and the essential of proposed loss functions.

The effect of progressive training. Our training scheme can gradu-
ally improve the fitting quality and select more appropriate cuboids
as the adaptive abstraction. Figure 6 illustrates the predicted results
for three shapes in the training dataset at different training stages.
The first row shows the cuboids at three different layers after the
initial training, and the adaptive cuboid representation obtained by
training the mask selection module. The 2nd, 3rd rows show the
outputs after the third and the fifth alternative training of the mask
selection and the cuboid prediction. The 4th row is the final result
after fine-tuning the whole network. We use WP-1, WP-2, WP-3,
WP-4 to denote these four watch points. We can clearly see that

Table 1. Quality statistics of the staged training results on the four shape
categories. The number in the table is the average 𝐷cd (Cadapt) over all the
shapes. We separate the statistics results of the training and test set in the
form of “training(test)”.

Category WP-1 WP-2 WP-3 WP-4

Airplane 10.06(18.84) 9.52(18.87) 9.35(18.70) 9.32(18.68)
Chair 22.49(26.68) 20.76(25.75) 20.61(25.70) 18.92(24.79)
Table 19.84(28.13) 19.37(27.81) 19.25(27.71) 18.30(27.58)
Animal 19.90(20.10) 19.12(20.03) 19.03(19.88) 18.85(19.06)

the alternative training improves the adaptive cuboid selection and
cuboid parameters: the tail and back of the airplane are better char-
acterized by cuboids and the selection mask on the tail is gradually
updated, the orientation of the cuboid at the chair seat region fits
the input better, and the cuboids corresponding to the leg and the
desktop of the table are aligned to each other more closely. The
metric evaluation reported in Table 1 also shows that the alternative
training improves the approximation quality gradually.

Table 2. Quality statistics of results from the network using different loss
combinations. We present the average 𝐷cd (Cadapt) of the training and test
sets as“training(test)”.

Category Net I Net II Net III Net IV Net V

Airplane 9.32(18.68) 10.18(18.73) 11.11(19.03) 11.60(19.38) 10.98(18.81)
Chair 18.92(24.79) 19.15(24.85) 21.44(26.31) 19.58(25.65) 19.72(25.37)
Table 18.30(27.58) 20.32(28.51) 19.96(28.10) 22.66(30.06) 21.56(29.80)
Animal 18.85(19.06) 20.76(21.18) 18.91(19.08) 19.07(19.11) 19.12(19.15)

Ablation study of loss terms. Every loss plays its own role in
training the cuboid prediction network. We test a set of networks
to prove the essential of these loss functions.
– Net I: use all the loss functions;
– Net II: remove the hierarchical coverage loss;
– Net III: remove the mutex loss;
– Net IV: remove the average area loss;
– Net V: remove the alignment loss and bilateral symmetry loss.
We train these networks on the airplane category and compare their
result quality. From the quality statistics (Table 2) and the visualiza-
tion of the cuboid abstraction (Figure 7), We found that (1) with all
the loss functions, the network yields the adaptive abstractions with
the smallest error than other networks; (2) without the hierarchical
coverage loss, the results have a worse approximation error and
more inconsistent hierarchy than (1); (3) without the mutex loss, the
predicted cuboids overlap each other and the adaptive abstraction
contains more cuboids; (4) Without the average area loss, many
degenerate cuboids appear in C3, and they are easy to be picked into
the adaptive abstraction and damage the abstraction expressiveness;
(5) Without the regularization of the alignment and bilateral sym-
metry losses, the orientation and layout of cuboids are unpleasant
and the structure of the shape is not well captured by the cuboids.

Bottom-up hierarchical training. For predicting hierarchical struc-
tures, a common practice is to train the network in a top-down or
bottom-up manner, where the network is trained stage by stage and
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C3 C2 C1 Cadapt C3 C2 C1 Cadapt C3 C2 C1 Cadapt

WP-1

WP-2

WP-3

WP-4

Fig. 6. Visualization of hierarchical and adaptive cuboid abstraction at different training stages.

I

II

III

IV

V

C3 C2 C1 Cadapt C3 C2 C1 Cadapt
Fig. 7. Ablation study of loss terms. The two input shapes are chosen from
the training set of the airplane category. More visual comparisons on other
categories are provided in the supplement material.

the subnetworks used in the previous stages are frozen when the
later stages are in training progress. We experimented a kind of
these training schemes and found it is no better and even worse than
our current training scheme. The experiment is set up as follows:
the network (illustrated in Figure 8) uses the same encoder as ours,
but trains the decoder branch for the finest level of cuboids first;
then freezes the encoder and the decoder branch of C3 to train the
decoder branch of C2, and so on in a bottom-up way. After training
this cuboid prediction module, we use its output to train the mask
selection module. The downside of this bottom-up training is that
the encoder and decoder part for the finer layers is not updated in
the later stage and the error would accumulate. Compared with our
network output from the initial training, this bottom-up trained
network predicts less visual-pleasing results with larger approxima-
tion error as tested on the airplane category (see Figure 9), thus it

FC(128) FC(128) FC

FC(128) FC(128) FC

FC(128) FC(128) FC

+

+

cuboid prediction moduleC3

C2

C1

Fig. 8. The bottom-up hierarchical network for three-layer cuboid prediction
(Decoder part).

bottom-up

our method C1C2C3 Cadapt

Fig. 9. Visualization of results of the bottom-up hierarchical network on the
airplane category. The results of our network is also shown for comparison.
The average Chamfer metrics on the training and test sets are 11.43 and
19.48, respectively.

is essential to update the decoders of each layer simultaneously as
done in our network.

5.3 Experiments and comparisons
The quality statistics of our method on the four shape categories
are collected in Table 3. Figure 1 and Figure 10 show a collection of
adaptive cuboid abstractions predicted by our network.
We compare our results with the work of [Tulsiani et al. 2017]

which is an unsupervised learning approach for cuboid abstraction.
Since Tulsiani et al. ’s network uses all the shapes in the dataset
as the training data, we retrain Tulsiani et al. ’s network on our
training sets and evaluate the result quality on both the training
and test set. From Table 3, we can clearly see that the quality of
our adaptive abstraction approximates the input shape much better.
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Fig. 10. Various adaptive hierarchical cuboid abstractions predicted by our network for 3D shapes from four categories.

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Fig. 11. Comparison of abstraction results between our method and [Tulsiani et al. 2017]. (a) the input shape, (b) our adaptive abstraction; (c) the result of
[Tulsiani et al. 2017]. Cuboids are color-coded by their corresponding indices at each hierarchical layer defined in our network or Tulsiani et al. ’s network. It is
clear to see that our result approximates the input more faithfully.

Table 3. Quality statistics of 3D abstraction results. The numbers in the
table are the average metrics over all the shapes. We present the statistical
results of the training and test set as “training(test)”. The result quality of
[Tulsiani et al. 2017] is provided for comparison.

Category #Cadapt 𝐷cd (Cadapt) 𝐷cd (C̃) 𝑟 𝑁𝑐𝑜𝑟

Airplane 7.93 9.32(18.68) 18.50(21.22) 1.08% 1.16
Chair 6.77 18.92(24.79) 25.32(27.34) 7.83% 1.64
Table 4.59 18.30(27.58) 26.97(29.71) 1.95% 1.23
Animal 7.40 18.85(19.06) 35.04(36.58) 3.09% 1.00

The advantage of our method is also verified by the visualization
in Figure 11. Our adaptive abstraction provides more meaningful
structures and captures important and small components.

We also evaluate how many corrections occurred in our training
data by measuring the correction ratio 𝑟 — the number of shapes
with correction over the total number of shapes, and 𝑁𝑐𝑜𝑟 — the
average number of corrected nodes in the corrected trees. We can
see that most results do not need any correction. The correction
ratio of the Chair category is little higher due to the large structure
variations, however, the number of corrected nodes is still small.

Table 4. Quality statistics of results of using the cuboid configuration (5, 10,
20) in the network. We present the average 𝐷cd (Cadapt) of the training and
test sets as“training(test)”.

Category default (5, 10, 20)

Airplane 9.32(18.68) 10.27(18.93)
Chair 18.92(24.79) 20.44(25.26)
Table 18.30(27.58) 18.86(27.81)

Choices of cuboid number. The cuboid numbers in the three levels
are fixed and serve as an initial cuboid candidate set in our network.
The cuboid number in the adaptive abstraction is different from
these fixed numbers (see the average cuboid number statistics —
#Cadapt in Table 3). To test the sensitivity of our method to this
initial number of cuboids, we reused the cuboid configuration of
the Animal category — (5, 10, 20) for the other three categories. The
statistical results in Table 4 show that the predicted abstractions
have slightly worse approximation errors than our defaulting setting
on the training data, but there is no much difference on the test data.
The visual results are presented in the supplemental material.
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Table 5. Statistics of the number of classes in the 3-level classification. #
Class-1, # Class-2, # Class-3 are the number of classes from the coarsest
level to the finest level.

Category # Class-1 # Class-2 # Class-3

Airplane 1 20 41
Chair 32 138 163
Table 5 43 61
Animal 4 38 41

Fig. 12. Shape classification by using adaptive cuboid abstraction structure.
Six classes with randomly sampled shapes from airplane, chair and table
category are visualized. Shapes in each group have the same adaptive cuboid
tree structure which is rendered in center.

5.4 Applications
We utilize the learned adaptive hierarchical cuboid abstraction and
the latent code for different shape analysis and editing tasks.

Structure-aware classification. Shapes in the same category usu-
ally possess similar geometric structure though there exist structural
variations. As the cuboid abstraction can characterize structural vari-
ations and provide a hierarchical structure, we use the selection
mask vector (whose entry is 0 or 1) to classify the shapes of a col-
lection in a multi-level. We first classify the shapes by using the
selection mask vector of C1

adapt to obtain a coarse level of classifi-
cation, then each class is subdivided into sub-classes by using the
selectionmask of C2

adapt, finally, we use the selectionmask of Cadapt
to get the third-level classification. In Table 5 we count the number
of classes of the 3-level classification on the training sets of the four
shape categories. In Figure 12 we visualize six common classes of
Cadapt from the airplane, chair, and table category. We can see that
the adaptive abstraction helps group structure-similar shapes. In
Figure 13(left) we visualize the distribution of the number of adap-
tive abstractions in each class by pie charts. The area of the slice
represents the ratio of the number of adaptive abstractions in each
class. The abstraction-based classification also helps distinguish
shapes with rare geometric structures. Figure 13(right) illustrates
some of classes which contain single shape only.

Cuboid-based shape deformation. The cuboid abstraction provides
a set of handles for editing the shape geometry. Any change of the

airplane

chair

table

C1
adapt C2

adapt Cadapt

Fig. 13. Left: the distribution of the number of adaptive abstractions in each
class. We group the classes whose number of elements are less than 10 to a
single piece for better visualization (see the slightly translated pieces). Right:
shape classes that have one instance only.

(a) (b) (c) (d)

Fig. 14. Cuboid-based shape deformation. (a) The input shape and its adap-
tive abstraction. The parent cuboids of some selected cuboids are rendered
as frames. (b) the deformation result by editing the cuboids of the adaptive
abstraction; (c) & (d): the deformation results by editing some selected par-
ent cuboids. The initial selected cuboids are rendered in wire-frame.

parameters of a cuboid introduces an affine transformation with re-
spect to itself. This transformation can be applied to the local region
controlled by the cuboid and passed to its descendant cuboids. For
a 3D shape, assume that its adaptive abstraction has𝑚 cuboids, we
divide the surface into𝑚 groups by associating the surface point to
its nearest cuboid. For any cuboid with changed parameters, we can
apply the affine transformation to the corresponding point group.
However, this transformation would yield non-smooth transitions
around part-adjacent regions. Thus for each surface point, we blend
the transformations of its nearest two cuboids with the weight of
the inverse distance from the point to those cuboids, and deform
the point with the blended transformation. In Figure 14 we provide
deformation results for an airplane model with the editing on the
cuboids of its adaptive abstraction and their parent cuboids.

Abstraction-aware shape retrieval from 3D input. 3D retrieval is an
important task in 3D analysis. Besides retrieving a shape with the
least geometry difference from the dataset, the structural similarity
between the retrieved shape and the 3D query is also important. We
utilize the latent code of the adaptive cuboid abstraction network
for this task. For a 3D query, we use its 3D latent code as the key for
searching. As for comparison, we also use the latent code trained
from a 3D autoencoder for this task. We choose the O-CNN-based
3D autoencoder [Wang et al. 2017, 2018] as the competitor, in which
the octree depth is 5. We run a retrieval benchmark for these metrics
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Table 6. Approximation quality of the top-k retrieved shapes on three cat-
egories. The average Chamfer distance between the k-th retrieved shape
and the query is measured.

category method 1st 5th 10th

Airplane our method 18.6 21.0 22.0
autoencoder 18.9 21.4 22.6

Chair our method 24.9 29.2 30.5
autoencoder 23.1 28.3 30.7

Table our method 27.9 32.2 34.3
autoencoder 26.2 32.0 34.1

Query 1st 3rd 5th Query 1st 3rd 5th

Fig. 15. Comparison of 3D shape retrieval using our abstraction latent code
and 3D autoencoder’s latent code. The query shape is on the left. The 1st, 3rd,
5th retrieved shapes and their adaptive cuboid abstractions are visualized
on the right. The results of using our method (upper row) and autoencoder
latent code (lower row) are shown side by side. The retrieved shapes from
our method have the similar adaptive abstraction layout and their geometric
structures are more consistent to the query than using the autoencoder
approach. Structure-dissimilar shapes are highlighted in red.

on the airplane, chair and table datasets: for each shape in the test
set, we query Top-10 shapes from the training set. The statistical
results of Table 6 show that both approaches find shapes with a
similar level of geometric error, but our method is capable of finding
more structure-similar shapes as shown in Figure 15 because our
latent code characterizes both geometry and abstraction similarity.

Abstraction-aware interpolation. Shape interpolation in the latent
space is popular in the learning-based shape generation works.
However, many works did not consider the shape structure validity,
and the interpolated shapes are often incomplete or less meaningful
to humans. With our network, we can decode the interpolated latent
code to the adaptive abstraction whose abstraction structure is more
meaningful. Figure 16 shows the interpolated adaptive abstractions
for two input shapes. We find that the transition of abstractions is
smooth in most cases. We also use the interpolated abstraction to

Fig. 16. Abstraction-aware shape interpolation. For the two 3D shapes on
at the two ends of each row, we interpolate their latent codes linearly and
illustrate the predicted adaptive cuboid abstractions. We also retrieve the
most similar 3D shapes from the dataset using the interpolated latent code
and deform the retrieved shape by our cuboid-based deformation as the
interpolated shapes.

retrieve the most similar shape from the dataset, and deform the
shape accordingly, for the shape generation purpose.

6 CONCLUSION
We have presented an adaptive hierarchical cuboid representation
for 3D shape abstraction and introduce an unsupervised learning ap-
proach to extract this representation from unlabeled shape data. We
evaluate our approach on four shape datasets and demonstrate its
superiority over the existing method. We also utilize the learned ab-
straction successfully for different shape analysis tasks and achieve
convincing results. We believe that the resulting abstractions could
benefit many shape analysis and manipulation tasks, such as func-
tional prediction and structural-aware shapemanipulation. Also, our
learning approach could be used for generating shape abstractions
of online unlabeled shape repositories.

Limitations. Some small components of shapes like chair wheels
are not captured by our learned adaptive cuboid abstraction. It is
because the volume and surface coverage losses are not high on
these small components where the network unlikely places small
cuboids. A possible solution is to first detect feature regions by
primitive fitting or unsupervised segmentation and then penalize
the coverage loss on those regions with a large weight.

A few directions of our research are worth for future study.

Multi-level abstraction. In our work we only experiment with
three-level cuboid abstraction. For highly-structured like bicycles, it
is essential to use more levels of abstraction to capture the variant
structures. It would be interesting to test our algorithm on more
complicated shape categories.
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More geometry relationships. Currently we only use the inclusion
relationship and a weak bilateral-symmetry. Other geometry rela-
tionships like rotational and translation symmetry [Li et al. 2017]
are not considered. How to explore other geometry relationships
under the unsupervised setting is an interest research direction.

Non-static shapes. Because the shapes in our training dataset
mostly have similar poses, it is hard to abstract two shape parts
that have clear semantic meaning by two cuboids if these parts
cannot be distinguished from geometry. If the shape data comes with
animation or motion sequences, it will help learn a more structure-
aware and part-consistent abstraction.

Small sample learning. As the usability of shape abstraction is
determined by users, it would be better to use a few of labelled data to
supervise the learning of shape abstraction or intervene the learning
by correcting the imperfect prediction in an active learning manner.

Explicit consistency. In our method, the abstraction consistency
is not explicitly formulated as there is no groundtruth. How to
quantize it and use it as a loss function is worth studying.

Beyond cuboid abstraction. Currently we assume that the union
of the cuboids in the abstraction approximates the input shape. A
promising extension is to introduce more types of Boolean operators
to enhance the abstraction representation, like intersection and dif-
ference for mimicking CSG operations. Another direct extension is
to support more geometric primitives, like ellipsoids, cylinders, and
cones to improve the abstraction compactness and expressiveness.
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